技术文章您的位置:网站首页 >技术文章 >奥氏体不锈钢中铁素体的作用、检测及预测

奥氏体不锈钢中铁素体的作用、检测及预测

发布时间:2021-08-25   点击次数:140次

奥氏体不锈钢中铁素体的作用、检测及预测

奥氏体不锈钢是不锈钢焊材中重要的一类,因其良好的耐热、耐蚀、耐低温及好的加工和焊接性被广泛应用于各个领域,其产量约占不锈钢总量的70%。


奥氏体是C溶解在γ铁形成的间隙固溶体,具有面心立方结构,无磁性;奥氏体不锈钢是主要通过冷作加工使其强化(并产生诱导马氏体而导致有磁性)的不锈钢。
铁素体是奥氏体不锈钢中的重要组成部,具有体心立方结构,有磁性,分为α铁素体和δ铁素体。
焊接时奥氏体不锈钢形成的铁素体,是由液态向固态转变时形成的铁素体,此种铁素体称为δ铁素体(也叫高温铁素体);而由奥氏体析出的铁素体也就是α铁素体,两者因转变温度不同而有着 本质上的区别。

α铁素体:C溶解在α铁形成的间隙固溶体,常用符号F表示,是铁素体不锈钢的主要组成;
δ铁素体:C溶解在δ铁形成的间隙固溶体,也称高温铁素体,在奥氏体不锈钢焊缝中起着极其重要的作用;


1.2 铁素体的形成机理


所有不同种类的不锈钢都是Cr含量12%以上的铁基合金。不锈钢的组织结构由合金元素含量(也就是铬、镍当量)所决定。
对不锈钢,合金元素可分为两大类,即铁素体形成元素(也称铬当量元素)和奥氏体形成元素(也称镍当量元素),两大类元素的平衡关系决定了组织中铁素体含量的多少。奥氏体形成元素主要有C、N 、Mn、Ni、Cu等,铁素体形成元素主要有Cr、Mo、Si、Nb、Al、Ti等。


合金元素对不锈钢的作用


图片

铬镍奥氏体钢凝固时,根据不同的化学成分可能会有3种结晶模式,即A全奥氏体模式、AF(初析奥氏体并在凝固终了前,共晶生成部分铁素体)凝固模式和FA(初析铁素体并在凝固终了前形成部分奥氏体)凝固模式。焊缝凝固模式不同,焊缝凝固的开裂敏感性也不同。FA凝固模式抗凝固裂纹能力最强,全奥氏体凝固模式抗裂能力最差。
而铬镍奥氏体焊缝的凝固模式主要取决于焊缝金属的[Cr/Ni]eq,有文献研究表明当[Cr/Ni]eq>(1.47-1.58)时为FA凝固模式,当(1.47-1.58)>[Cr/Ni]eq>(1.14-1.24)为AF凝固模式,当[Cr/Ni]eq<1.14-1.24)为全奥氏体凝固模式,可为设计者提供参考。

二、不锈钢中铁素体的作用
奥氏体不锈钢中的δ相铁素体有利于提高焊缝的抗晶间腐蚀性能,也能产生σ相脆化和δ相选择性腐蚀,不同行业对δ相铁素体含量均有相关要求。下面简要阐述奥氏体不锈钢中铁素体利与弊。

奥氏体不锈钢焊缝中δ相铁素体的作用
有利作用一:
防止热裂纹
机理:
铁素体对P、S、Si、和Nb等元素溶解度较大,能防止这些不利元素偏析和形成低熔点共晶,从而阻止凝固裂纹产生。
研究表明δ相超过3%可明显提高奥氏体焊缝抗热裂性能;
不利作用:
易产生脆化相,降低材料韧性。
机理:
高温下δ相铁素体容易转化成σ脆化相,即使不在高温下长时间工作,多层焊接时即可产生。δ相铁素体含量越高,越易析出σ相;
铁素体含量过高,极易产生脆性相,将造成堆焊层材料脆化,降低材料韧性,造成脆性破坏;
也会使热加工裂纹倾向性增大。

有利作用二:
少量铁素体可提高焊接接头的耐腐蚀性能,尤其是耐晶间腐蚀和应力腐蚀破裂性能。
机理:
在奥氏体不锈钢中,铁素体的存在可以打乱单一奥氏体组织的方向性,从而避免贫Cr层贯穿于晶粒之间构成腐蚀介质的集中通道;
δ相铁素体富Cr,碳化铬可优先在δ相边缘沉淀,不会在奥氏体晶粒表面形成贫铬层,从而也有利于提高焊缝的抗晶间腐蚀性能。
不利作用:
过高的铁素体降造成奥氏体抗点腐蚀和特殊介质中的腐蚀性能下降。
机理:
因其与奥氏体的电极电位不同,超过一定限度后,会使点腐蚀和δ相选择性腐蚀倾向增大;
选择性腐蚀与腐蚀介质有关,在硫酸和尿素介质中将优先腐蚀。
注:
① σ相(脆硬无磁性的Fe-Cr相化合物,500~900℃下长时间工作,δ相铁素体易产生σ相,并分布于晶界,严重降低塑性和韧性并会增大晶间腐蚀性能);
② 为避免高温脆化;此时需将铁素体控制在3~8%,或固溶处理,将σ相溶解回基体。

三、铁素体常见的检测/预测方法
3.1 磁性法——JB/T 7853-95 铬镍奥氏体不锈钢焊缝中铁素体数的测量



联系我们

contact us

咨询电话

17853776118

扫一扫,关注我们

返回顶部